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1
AMBULATION PREDICTION CONTROLLER
FOR LOWER LIMB ASSISTIVE DEVICE

This invention was made with government support under
W81XWH-09-2-0020 awarded by the United States Army.
The government has certain rights in the invention.

TECHNICAL FIELD

The disclosure refers generally to the field of human
machine interfaces and specifically to intent recognition for
the control of lower-limb assistive devices.

BACKGROUND

Transfemoral (i.e. above-knee) amputation is a significant
cause of disability in the United States with approximately
31,000 new cases occurring each year. Transfemoral ampu-
tees may use an assistive device known as an artificial leg,
or a prosthesis, to replace a missing natural leg.

Transfemoral prostheses have traditionally been mechani-
cally passive devices, which are controlled by mechanical
interaction with the subject’s limb. A passive prosthesis uses
springs, dampers, or other passive devices that do not
provide external energy to power the prosthesis. Passive
lower-limb prostheses provide a lower limb amputee or
other user with a limited range of ambulation modes, such
as standing, walking, ascending or descending ramps, or
climbing up and down stairs. Transfemoral amputees who
use passive prostheses have significantly impaired balance,
walking symmetry, and metabolic energy efficiency. They
also tend to have difficulty navigating more demanding
terrain such as ramps or stairs. The use of an active trans-
femoral prosthesis, with the ability to generate positive
mechanical power, greatly increases the number and nature
of ambulation modes that can be restored to amputees.

Lower limb prosthesis users may desire to ambulate in
several modes, including level walking, climbing stairs,
descending stairs, climbing ramps, or descending ramps.
Operation in multiple modes requires the prosthesis to be
able to transition from one mode to another. The failure of
a prosthesis to transition prevents the user from moving
appropriately and can result in harm to the user. For instance,
if a lower limb prosthesis user wishes to transition from
walking to climbing stairs, the prosthesis must be raised so
that its foot raises above the first step. Failure of the
prosthesis to transition appropriately can result in the device
hitting the stairs, potentially damaging the prosthesis and
causing injury to the user through a fall or other event.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts different gait phases of a stride.

FIGS. 2a and 24 depict a possible implementation of
assistive device 10.

FIG. 3 depicts a socket to which the assistive device of
FIGS. 2a and 2b may be coupled.

FIG. 4 is a diagram showing a possible implementation of
the controller board 150.

FIG. 5 depicts a possible implementation of training
remote 300.

FIG. 6 is a representation of sample sensor data produced
over the ambulation modes level walking, ramp ascent, ramp
descent, stair ascent, and stair descent.

FIG. 7 is flow diagram of a mode specific intent recog-
nition strategy implemented according to an embodiment of
the invention.
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FIG. 8 displays a finite-state map of a Bayesian network
that implements an embodiment of the time history strategy
described herein.

FIG. 9 represents possible finite state controllers in the
walking, stair ascent, and stair descent ambulation modes,
along with impedance parameters for each gait phase state.

FIG. 10 displays a summary of one embodiment of the
adaptive intent recognition method described herein.

DETAILED DESCRIPTION

Various embodiments of the systems and methods
described herein relate to an improved ambulation controller
for predicting the ambulation mode of an assistive device,
such as a lower limb prosthetic or orthotic.

Various embodiments of the systems and methods
described herein relate to an improved method of training an
ambulation controller in order to predict the ambulation
mode of an assistive device.

Various embodiments of the systems and methods
described herein relate to an assistive device that provides
automatic transitions between ambulation modes. An assis-
tive device provides automatic transitions between ambula-
tion modes if a button or other actuator does not need to be
pressed to transition the assistive device from one ambula-
tion mode to another.

Various embodiments of the systems and methods
described herein relate to an assistive device that provides
seamless transitions between ambulation modes. An assis-
tive device provides seamless transitions between ambula-
tion modes if the user does not have to stop or is not
perturbed (i.e. the assistive device kicks or otherwise dis-
rupts the user’s gait while in use) when the assistive device
transitions from one ambulation mode to another.

Various embodiments of the systems and methods
described herein relate to an assistive device that provides
natural transitions between ambulation modes. An assistive
device provides natural transitions between ambulation
modes if the user does not need to perform additional
movement, such as shaking the assistive device of providing
additional muscle contraction in order to transition the
assistive device from one ambulation mode to another.

A general description of gait cycle and gait phase will now
be provided. A gait cycle is the period of motion between a
complete cycle of a gait. As an example, a gait cycle starts
when the heel of one foot touches the ground, continues
through the toe-off and swing phases of the leg, and finishes
when the heel of the same foot again touches the ground.
Completion of a single gait cycle by a user is called a stride.
A gait phase is a segment of a gait cycle of a limb; for
instance, stance phase (wherein the foot of the limb is
touching the ground) and swing phase (wherein the foot of
the limb is not touching the ground) are each gait phases.
FIG. 1 shows the stance phase of a leg, which starts when the
heel of the foot strikes the ground (herein known as “heel
strike”) and continues until the toe of the foot leaves the
ground (herein known as “toe-off” or “push off”).

A detailed description of embodiments of the invention is
provided with reference to the figures. FIGS. 2a and 24
depict assistive device 10. Assistive device 10 comprises
powered knee 20, ankle 30, and shank 40. Knee 20 and ankle
30 are each coupled to one or more motors 41 and one or
more transmissions 42 that together are capable of produc-
ing physiological levels of torque. Assistive device 10 and
its related powered components are powered by battery 43.

Assistive device 10 further comprises mechanical sensors
50. In one embodiment, mechanical sensors 50 include load
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cell 51 that measures the vertical load along the long axis of
assistive device 10; position sensor 52 and velocity sensor
53 that measure the position and velocity of the knee 20;
position sensor 54 and velocity sensor 55 that measure the
position and velocity of ankle 30; and a six degree of
freedom inertial measurement unit 56 at shank 40, compris-
ing accelerometers and gyroscopes for measuring accelera-
tions and angular velocities. Mechanical sensors 50 may be
contained within the assembly of assistive device 10,
attached to assistive device 10, or attached to the user of
assistive device 10. In other embodiments, knee 20 and
ankle 30 could be powered instead with hydraulics, com-
pressed gas, or other mechanisms.

FIG. 3 displays a socket 60, into which fits the residual
limb of a user. Socket 60 comprises lining 60a and exterior
shell 605. Assistive device 10 is coupled to socket 60 by a
pyramid style connector or other appropriate connector.
Socket 60 is coupled to electrodes 70. In one embodiment,
electrodes 70 are embedded in socket 60 and contact the
user’s skin. Electrodes 70 measure EMG signals from the
user’s residual limb muscles when the user operates assistive
device 10. In one embodiment, electrodes 70 may be placed
on the following muscles of the user: semitendinosus, biceps
femoris, tensor fasciae latae, rectus femoris, vastus lateralis,
vastus medialis, sartorius, adductor magnus, and gracilis.

FIG. 4 displays a representation of controller board 150.
Controller board 150 is one embodiment of a control unit
used to control assistive device 10. In one embodiment,
controller board 150 is physically attached to socket 60 and
connected to the components of assistive device 10 and to
electrodes 70 by communication bus 160. Controller board
150 may comprise an off-the-shelf component, such as the
Overo® Air Computer-On-Module (GUM3503A) (Gum-
Stix) or a custom built component. Controller board 150
comprises microprocessor module 160, such as the Texas
Instruments OMAP 3503 Applications Processor with pro-
cessor speed of 600 MHz, or another appropriate micropro-
cessor. Microprocessor module 160 comprises non-volatile
memory module 190 and RAM memory module 195. Sig-
nals from electrodes 70 are bandpass filtered in hardware
between 20 Hz and 420 Hz and digitally sampled at 1000
Hz. Signals from mechanical sensors 50 are sampled at 500
Hz and the signals from load cell 51 are low pass filtered at
20 Hz.

Controller board 150 further comprises transceiver mod-
ule 200 for communication with other components, such as
computer unit 250 and training remote 300 (described
below). In one embodiment, transceiver module 200 may be
a wireless transceiver that is compatible with 802.11, Blu-
etooth, FM radio, or another wireless standard. Controller
board 150 and its components may be powered from main
battery 43 or by external power source 205, which provides
power conditioning separate from main battery 43 and may
comprise 12V or 20V lithium polymer battery. The details of
the components on controller board 150 are exemplary and
other components could be used.

Controller board 150 communicates via transceiver mod-
ule 200 with computer unit 250. Computer unit 250 com-
prises a display, an input device (such as a keyboard, mouse,
and/or touchpanel), a wireless module, a hard drive, a
processor, an operating system, memory, and other known
aspects of a computer system. Embodiments of computer
unit 250 include, but are not limited to, a desktop computer
system, a laptop computer system, a smartphone system, a
tablet computer system, and other similar computer systems
known in the art. Computer unit 250 is installed with control
software 270 that provides a graphical user interface (GUI)
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271. GUI 271 allows a user to communicate with controller
board 150 in order to control and receive information from
assistive device 10.

Training remote 300 comprises a wireless transceiver for
communication with controller board 150. As shown in FIG.
5, in one embodiment, training remote 300 comprises a
keyfob with multiple buttons. Each button on training
remote 300 corresponds to a possible ambulation mode of
assistive device 10. When a clinician (or other individual)
presses a button on training remote 300, training remote 300
sends a signal to controller board 150 that causes assistive
device 10 to change to the ambulation mode corresponding
to the pressed button. Additional buttons on training remote
300 may be used to power on or off the motors of assistive
device 10 or to update AMP 425 with new data. The
capabilities of training remote 300 may be incorporated into
computer unit 250, in another embodiment.

In one embodiment, microprocessor module 170 is pro-
grammed with an ambulation controller 400. Ambulation
controller 400 comprises ambulation mode predictor (AMP)
425, phase state controller 450, and torque controller 475.
Ambulation controller 400 is programmed in the C language
and runs on a Linux operating system installed on micro-
processor 160. Ambulation controller 400 may be loaded
onto microprocessor module 160 wirelessly, by USB con-
nection, or by other appropriate means.

An overview of the operation of certain embodiments
described herein is now provided. AMP 425 is a pattern
recognition controller and utilizes pattern recognition meth-
ods to predict the ambulation mode of assistive device 10.
AMP 425 is trained using test data that may originate from
a generalized training phase. AMP 425 may be further
trained using level walking training data from a new user
who did not participate in the generalized training phase.
After AMP 425 has been trained, it may be used to predict
the ambulation mode of a user operating assistive device 10
to walk, climb stairs, or perform other ambulations. At each
heel strike and toe off of assistive device 10, ambulation
controller 400 uses AMP 425 to predict the ambulation mode
of the next stride of the user. AMP 425 may use one or more
of the methods described herein to predict the ambulation
mode of the next stride. Phase state controller 450 uses the
mode predicted by AMP 425 to determine appropriate
impedance values for assistive device 10. Torque controller
475 utilizes the phase state and impedance values from
phase state controller 450 to cause motors 41 to operate
assistive device 10 in the predicted ambulation mode, so that
in the user’s next stride, assistive device 10 operates in the
predicted mode. Transition between ambulation modes at
heel strike and toe off results in operation of assistive device
10 that is similar to operation of a natural leg, as the
impedance parameter values of a natural leg also change at
these state points. Additionally, transitioning ambulation
modes at the heel contact and toe off prevents mode tran-
sition from occurring while the user has weight on assistive
device 10 or while assistive device 10 is swinging.

Generalized training phase. AMP 425 utilizes a stored set
of features to predict an ambulation mode. In one embodi-
ment, AMP 425 utilizes a feature database 185 comprised of
feature databases instantaneous feature database (IFD) 185/
and stride feature database (SFD) 185s. Feature information
for IFD 185; and SFD 185s may be generated during a
generalized training phase.

Feature database 185 is stored on microprocessor module
160. Feature database 185 contains features 415 derived
during use of assistive device 10 by multiple users over time.
The number of users required to participate in the general-
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ized training phase varies, although approximately ten or
more users are preferred to ensure feature database 185
allows AMP 425 to accurately predict the next ambulation
mode of assistive device 10 when it is being operated by a
user. Users participating in the generalized training phase
may have varying physical characteristics (including differ-
ent heights, weights, and residual limb lengths) so that
feature database 185 can contain a range of feature data.

In one embodiment of the generalized training phase,
multiple users operate the assistive device 10 in various
ambulation modes and in transitions between ambulation
modes. First, a clinician (such as a certified prosthetist) may
align and attach assistive device 10 to socket 60. In one
embodiment, a clinician then sets assistive device 10 to
“level walk” mode through controller board 150. The user
then spends approximately 20 minutes performing level
walking using assistive device 10, while the clinician visu-
ally supervises the user to ensure the user is performing level
walking Level walking tasks include short steps, long steps,
turning, shifting from side to side. The user may walk in a
line or in other directions. The clinician then sets assistive
device 10 to another mode such as “ramp ascent,” and the
user repeats a procedure similar to the one involving level
walking. Other modes are repeated similarly, with the cli-
nician setting assistive device 10 to that mode and the user
operating assistive device 10 in that mode. Collected data is
labeled with the mode in which assistive device 10 operated
while the data was being generated by mechanical sensors
50 and electrodes 70.

The user continues to operate assistive device 10 by
performing transitions from one ambulation mode to
another. Each user may complete 20 or more repetitions of
a full locomotion circuit. The locomotion circuit involved
the following locomotion modes and occurred sequentially
with seamless transitions from mode to mode: standing—
level walking— ramp ascent— level walking— turn
around— level walking— ramp descent— level walking—
turn— level walking— stair ascent— level walking— turn
around— level walking— stair descent— level walking—
turn and stop. The ramp was set at a 10 degree angle and a
staircase consisting of four stairs was used for stair ascent/
descent. It should be understood that alternate transition
sequences may be performed by users during the generalized
training phase and steeper or shallower ramp angles could be
accommodated.

When a user transitions from one ambulation mode to
another, at heel strike or toe off, the next ambulation mode
of assistive device 10 is manually triggered by the clinician
using training remote 300. During the transition, the clini-
cian watches the user and presses a button on the training
remote 300 when the user transitions from one ambulation
mode to another. Training remote 300 transmits data to
controller board 150 reflecting the next ambulation mode in
which the user is operating. In this way, collected data is
labeled with transitions from an ambulation mode.

Testing data td from mechanical sensors 50 and electrodes
70 is collected during each ambulation mode and during the
transitions between ambulation modes, and is saved in buffer
191 on microcontroller module 160. FIG. 6 displays sample
testing data from certain sensors collected over the course of
a gait cycle. Testing data td is collected throughout each gait
cycle and is labeled with the ambulation mode in which the
user was operating while testing data td was generated. In
one embodiment, testing data td is saved in a file whose file
name indicates the ambulation mode in which the user was
operating. Alternately, testing data td may be saved in other
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formats that reflect the ambulation mode in which the user
operated while testing data td was being generated.

Features in SFD 185s are generated by ambulation con-
troller 400, which extracts features 415 from each gait cycle
of training data td and stores them in SFD 186 along with the
ambulation mode from which they were collected. Ambu-
lation controller 400 additionally extracts features 415 from
one or more instantaneous windows iw in each gait cycle of
training data td, and stores those features and their labeled
ambulation mode in IFD 185i. In one embodiment, ambu-
lation controller 400 selects training data td from instanta-
neous windows iw prior to eight state points in a gait cycle:
at 0%, 25%, 50%, and 75% of stance phase (where 0% of
stance phase reflects heel strike of assistive device 10) and
at 0%, 25%, 50%, and 75% of swing phase (where 0% of
swing phase reflects toe-off of assistive device 10). Each
instantaneous window iw is approximately 300 ms in dura-
tion. Ambulation controller 400 identifies the heel strike and
toe off in each stride using data from mechanical sensors 50,
such as from load cell 51, and calculates the remaining state
points using heel strike and toe off information.

Upon instruction from the clinician, the ambulation con-
troller 400 trains AMP 425 using feature database 185. In
one embodiment, feature database 185 comprises tables for
storing features 415 derived from data obtained from
mechanical sensors 50 and electrodes 70. Features 415 for
data from mechanical sensors 50 include the mean, mini-
mum, maximum, and standard deviation. Features 415 for
data from electrodes 70 include the mean absolute value, the
number of zero crossings, the number of slope sign changes,
the waveform length, and the first two coefficients of a sixth
order autoregressive mode. Features other than features 415
that are known in the art could be used. Training of AMP 425
on the features in feature database 425 may be done with a
button click to GUI 271, a press of a button on training
remote 300, or another appropriate action.

AMP 425 is trained using feature database 185 using
pattern recognition techniques known in the art. In one
embodiment, AMP 425 is a pattern recognition controller
employing a linear discriminant analysis (“LDA”) method
that is trained using cross validation. Once trained, AMP 425
takes an input vector of features 415 and returns a set of
probabilities, with each probability reflecting the likelihood
that the next stride of assistive device 10 will be in a
particular ambulation mode.

In one embodiment, the controlled ambulation modes that
are trained during the generalized training phase include
level walking, ramp ascent, ramp descent, stair ascent, and
stair descent. In another embodiment, the controlled ambu-
lation modes that are trained include only level walking,
stair ascent, and stair descent, which may provide for more
accurate prediction results from AMP 425. In yet another
embodiment, the controlled ambulation modes may include
stumbling, obstacle avoidance, standing, turning, sit-to-
stand, stand-to-sit, running, hopping, shuffling, or skipping.

New user training phase. Predictions from AMP 425 may
be improved with respect to a new user (i.e. a user who did
not participate in the generalized training phase) by further
training AMP 425 with certain additional features added to
feature database 185. In one embodiment, feature database
185 is updated using data d collected from a user operating
assistive device 10 in level walking mode for approximately
20 minutes. As in the generalized training phase, features f
are derived from the data d and added to IFD 185:;. AMP 425
is then re-trained using IFD 185i. Retraining may occur with
all features from IFD 185i. Alternately, retraining may occur
with only those features from users whose physical charac-
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teristics (such as weight, height, or residual limb length)
most closely resemble those of the new user (which subset
would naturally include features f from the new user). The
new user training described herein improves the prediction
abilities of AMP 425 across all controlled ambulation modes
with respect to the new user, even though the additional
features f added to IFD 185 are derived only from level
walking of the assistive device 10. The new user training
phase reduces the training required for a new user and makes
assistive device 10 more available to users who otherwise
would not be able to complete the rigorous training, required
by prior art systems, due to age or health difficulties.

Previous class estimator. After a user completes a stride
(i.e. one completion of the gait cycle), embodiments of the
system described herein may review data from mechanical
sensors 50 and electrodes 70 collected during that stride to
determine whether the ambulation mode of the stride had
been predicted correctly by AMP 425. In one embodiment,
AMP 425 uses information from prior strides to improve its
prediction capabilities for future operation. On the first
prediction—when no prior stride has been taken—the prior
ambulation mode may be set to the starting ambulation
mode of the assistive device 10 (such as “standing”).

In one embodiment, AMP 425 may use ambulation mode
probabilities from the prior state point (hereinafter known as
“priors”) in order to predict the current ambulation mode. In
one embodiment, ambulation controller 400 comprises a
prior stride recognizer 445, which uses the priors to deter-
mine the prior stride’s actual ambulation mode, as follows.
Prior stride recognizer uses a pattern recognition method,
such as LDA, to compare features from the entire prior stride
against SFD 185s. Prior stride recognizer 445 selects the
most likely ambulation mode as the prior ambulation mode.
If prior stride recognizer 445 determines that the most likely
operation in the prior stride was a transition from one
ambulation mode at the start of the stride to a different
ambulation mode at the end of the stride, prior stride
recognizer 445 selects the ambulation mode at the end of the
stride as the prior ambulation mode.

Mode specific classers. For many ambulation modes, a
limited number of transitions exist from that mode. As one
example, a user who climbed stairs in the prior stride will
either continue climbing stairs (if there are more stairs to
climb) or transition to level walking (if all stairs have been
climbed). After determining the ambulation mode of the
prior stride, AMP 425 predicts the ambulation mode of the
next stride. One embodiment of AMP 425 utilizes five
mode-specific classifiers, each of which correspond to one
of five controlled ambulation modes: level walking, stair
ascent, stair descent, ramp ascent, and ramp descent. In one
embodiment, only the following transitions are possible
between ambulation modes during operation of assistive
device 10: from level walking to one of level walking, stair
ascent, stair descent, ramp ascent, or ramp descent; from
stair ascent to one of stair ascent or level walking; from stair
descent to one of stair descent or level walking; from ramp
ascent to one of ramp ascent or level walking; and from
ramp descent to one of ramp descent or level walking. For
example, if the prior ambulation mode of assistive device 10
was stair ascent, AMP 425 uses features from the prior stride
to determine whether those features indicate continued stair
ascent or a transition to level walking. In another embodi-
ment, the controlled ambulation modes are limited to level
walking, stair ascent, and stair descent. With a smaller
domain of controlled ambulation modes, error rates are
further reduced.
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FIG. 7 displays a generalized representation of one
embodiment of AMP 425. As shown in FIG. 7, AMP 425
includes a series of ambulation mode classifiers 440, where
each ambulation mode classifier 440; in the series 440
corresponds to an ambulation mode 440m. For each ambu-
lation mode classifier 440i, AMP 425 also includes series of
transition classes 441, where each transition class 441; in the
series 441 corresponds to a possible transition from ambu-
lation mode 440m to ambulation mode 441m. Each classifier
440; in the series of ambulation mode classifiers 440 is
trained using a pattern recognition method, such as an LDA
classifier, using features from IFD 185; that are labeled with
transitions from ambulation mode 440 to any other ambu-
lation mode (including ambulation mode 440m1) correspond-
ing to the series of transition classes 441. As shown in FIG.
7, prior stride recognizer 445 determines the prior ambula-
tion mode. AMP 425 then selects an ambulation mode
classifier amc from the series of ambulation mode classifiers
440 that corresponds to the prior ambulation mode. For
example, if the prior ambulation mode is “level walking”,
AMP 425 selects the “level walking” classifier from series
440. Ambulation mode classifier amc then uses features 415
of the prior stride to predict the most likely transition mode,
among possible transitions, from the prior ambulation mode.
In one embodiment, features 415 of the prior stride are
derived from an instantaneous window of approximately
300 ms prior to either heel strike or toe off. Table 1 lists
sample values of feature data 415 derived from data col-
lected in the instantaneous window prior to toe off. Table 2
lists sample values of feature data 415 derived from data
collected in the instantaneous window prior to heel strike.

TABLE 1

Sample feature set derived from instantaneous window prior to toe-off.

Knee Angle Load Cell EMG Sensor
Mean 3 1
Min 0 0.3
Max 5 1.05
Std Dev 3 0.05
Mean Abs Val 100
Zero Crossings 30
Slope Sign Changes 50
Waveform Length 200
Autoregressive Feature 1 0.1
Autoregressive Feature 2 0.05
TABLE 2

Sample feature set derived from instantaneous window prior to heel strike.

Knee Angle Load Cell EMG Sensor
Mean 30 0.05
Min 1 0
Max 60 0.3
Std Dev 20 0.05
Mean Abs Val 100
Zero Crossings 2
Slope Sign Changes 5
Waveform Length 100
Autoregressive Feature 1 0.003
Autoregressive Feature 2 0.002

AMP 425 selects the most likely transition mode as the
predicted ambulation mode, which is used by phase state
controller 450 and torque controller 475 to control assistive
device 10 to the predicted ambulation mode. In another
embodiment, each ambulation mode classifier 440 further
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corresponds to a particular gait phase. Each classifier 440i is
trained using features from IFD 185/ that are labeled with
ambulation mode transitions and the gait phase that corre-
sponds to the classifier. In this embodiment, AMP 425
selects an ambulation mode classifier from the series of
ambulation mode classifiers 440 that corresponds both to the
prior ambulation mode as well as to the gait phase. AMP 425
may be used to predict the most likely ambulation mode of
the next stride at multiple state points throughout the prior
stride.

Time history information. In another embodiment of AMP
425, the AMP 425 utilizes features derived from instanta-
neous windows prior to a plurality of state points in order to
improve the accuracy of ambulation mode prediction. Use
data ud from mechanical sensors 50 and electrodes 70 are
saved to microcontroller module 160 when assistive device
10 is in use. Ambulation controller 400 derives features from
the use data ud over each gait cycle. Specifically, features are
derived from use data ud generated during the same instan-
taneous windows used to generate features for IFD 185/ in
the generalized training phase (in one embodiment, the
approximately 300 ms prior to each of 0%, 25%, 50%, and
75% of both stance and swing phase).

At each state point, the ambulation controller 400 utilizes
current feature and gait information to determine a set of
probabilities, where each probability reflects the likelihood
of an ambulation mode in the next stride. FIG. 8 shows a
diagram of a two-time slice DBN graph. The arrows in FIG.
8 represent causality. Prior probabilities for each ambulation
mode are propagated from time step to time step. Locomo-
tion mode is the hidden unknown variable. The DBN fuses
current likelihood information with the prior information
through Bayes law which is given in equation 1 to form a

maximum posterior probability (MAP) p(CIX)), which
reflects the most likely ambulation mode of the next stride.

In equation 1, p(¥X|C) is a vector containing the likelihood
of each ambulation mode, given the features derived from
the instantaneous window; p(C) is the prior probability
vector reflecting the prior set of ambulation mode probabili-

ties, p(X) is the observational probability, and CMA » is the

MAP estimate. In one embodiment, p(?IC) contains the
probabilities predicted by one of the mode-specific classi-
fiers described above.

p| C>p(C)] (O

Ciaap = argmax(p(C| %) = argmax{
j169)

Between each step, the posterior probabilities of the prior
step are transformed into the priors for the next step through
a transitional probability matrix (¢ or “TPM”). The TPM
contains the probability of transitioning from one ambula-
tion mode to another. The TPM is trained using the training

10
TABLE 3-continued

Transitional probability matrix values.

Probability of transition to class

Stair
Descent

Level
walking

Ramp
Ascent

Ramp Stair
Descent Ascent

transition 0.2 0.8 0 0 0

from class

Ramp
Ascent
Ramp
Descent
Stair
Ascent
Stair
Descent

10 0.2 0 0.8 0 0

0.2 0 0 0.8 0

0.2 0 0 0 0.8

15

In one embodiment, priors are updated using a TPM
prepared using training data for each subject, where the
TPM reflects the probability each transition occurred during
the training data for that subject. Each subject may have a
different transitional probability matrix. In addition to being
generated from the training data in the TPM, priors can also
be set manually or evolved using optimization algorithms
such as a pattern search, simulated annealing or genetic
algorithm. Equation 2 describes this transformation, where
(p(CIx),.,) are the previous step’s posterior probabilities and
p(C), are priors used at the current step.

25

P(O)=p(C1x),.1 "¢ @

The likelihood model was formed by assuming features to
be a multivariate Gaussian function with equal class cova-
riance (linear discriminant analysis (LDA) assumption). As
with the mode specific class estimator, when no priors exist,
the priors may be set to those for the starting mode of the
assistive device 10 (such as “standing”).

Table 4 displays sample probabilities calculated by AMP
425 across a prior stride in an example, where AMP 425
determines that assistive device 10 transitions from level
40 walking to level walking at the end of stance phase. Over the
course of the stride, ambulation controller 400 collects data
from mechanical sensors 50 and electrodes 70. At the end of
the stride, ambulation controller 400 calculates features 415
from the instantaneous windows prior to 25%, 50%, 75%,
and 100% of stance phase. At 25% stance, AMP 425 uses the
DBN to fuse prior probabilities with current probabilities
determined by the mode specific methods described above,
to result in a combined probability vector {0.95, 0.05, 0, 0,
0} as indicated in Table 4 below. AMP 425 multiplies the
50 combined probability vector with the transitional probability
matrix shown in Table 3 to calculate the priors for 50%
stance. AMP 425 performs the same method at 50%, 75%,
and 100% of stance, with the combined probability vector at
100% of stance {0.97, 0.03, 0, 0, 0} indicating that level
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data from the generalized training phase or can be set using 55 walking is the most likely ambulation mode of the next gait
values such as those shown in Table 3. phase.
TABLE 3 TABLE 4
Transitional probability matrix values. 60 Exemplary time history probabilities during stance phase, indicating
transition from level walking to level walking.
Probability of transition to class
Level Ramp  Ramp Stair Stair
Level Ramp Ramp Stair Stair Walking  Ascent Descent Ascent Descent
walking  Ascent Descent Ascent Descent
25% Prior 0.4 0.2 0.2 0.1 0.1
Probability ~ Level 0.92 0.02 0.02 0.02 0.02 65 Stance Current 0.9 0.1 0 0 0
of walking Combined 0.95 0.05 0 0 0
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TABLE 4-continued

Exemplary time history probabilities during stance phase, indicating
transition from level walking to level walking,

Level Ramp  Ramp Stair Stair
Walking  Ascent Descent Ascent Descent
50% Prior 0.88 0.06 0.02 0.02 0.02
Stance Current 0.8 0.05 0.05 0.05 0.05
Combined 0.94 0.02 0.02 0.02 0.01
75% Prior 0.88 0.04 0.04 0.02 0.02
Stance Current 0.8 0.01 0.01 0.09 0.09
Combined 0.99 0.0005 0.0005 0.0035 0.0035
100% Prior 0.91 0.02 0.02 0.02 0.02
Stance Current 0.4 0.6 0 0 0
Combined 0.97 0.03 0 0 0

Table 5 displays sample probabilities calculated by AMP
425 across a prior stride in an example, where AMP 425
determines that assistive device 10 transitions from level
walking to stair descent at the end of a swing phase.

TABLE 5

Exemplary time history probabilities during a swing phase, indicating
transition from level walking to stair descent.

Level Ramp  Ramp Stair Stair
Walking  Ascent Descent Ascent Descent
25% Prior 0.9 0.05 0.02 0.02 0.02
Stance Current 0.6 0.03 0.03 0.04 0.3
Combined 0.98 0.0025 0.0011 0.0014 0.0106
50% Prior 0.9088 0.02 0.02 0.02 0.03
Stance Current 0.01 0.01 0.01 0.07 0.9
Combined 0.25 0.0006  0.0057 0.04 0.7
75% Prior 0.38 0.01 0.01 0.04 0.56
Stance Current 0.01 0 0 0.3 0.69
Combined 0.01 0 0 0.03 0.96
100% Prior 0.21 0.002  0.0002 0.022  0.7706
Stance Current 0.49 0 0.01 0.01 0.49
Combined 0.21 0 0 0.0005 0.7881

Adaptive intent recognition. Another embodiment of
AMP 425 uses adaptive intent recognition to further improve
its ability to predict the present ambulation mode. After
AMP 425 predicts the ambulation mode as described above,
assistive device 10 attempts to operate in the predicted
ambulation mode. The predicted ambulation mode, how-
ever, may differ from the ambulation mode in which the user
of assistive deice 10 intends to operate. For instance, AMP
425 may predict that assistive device should transition to
“stair ascent” mode, when in fact the user simply wishes to
continue level walking. This error can cause assistive device
10 to kick or otherwise move improperly while the user is
attempting to walk.

When a user operates assistive device 10, mechanical
sensors 50 generate stercotypical gait profile data which,
unlike EMG data, does not degenerate over time due to
effects of continued use or user exhaustion. As described
above, AMP 425 predicts the ambulation mode using a
window of data taken prior certain state points WD. After
predicting the ambulation mode, ambulation controller 400
causes assistive device 10 to operate in that ambulation
mode. Ambulation controller 400 then records data from
mechanical sensors 50 over a period of time, such as a gait
cycle. At the end of the gait cycle, ambulation controller 400
compares features from the recorded data to features in
feature database 185 to estimate the ambulation mode that
assistive device 10 was in over the gait cycle. Comparison
may be done using a pattern recognition technique such as
LDA. Features from window data WD are then added to the
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feature database 185 with the label of the estimated ambu-
lation mode. Adding features from window data WD in this
fashion, with the label of the estimated ambulation mode,
improves later ambulation mode predictions of the AMP 425
whether the estimated ambulation mode was the same as or
different from the ambulation mode predicted on the basis of
WD. If the predicted ambulation mode and the estimated
ambulation mode are the same, then the AMP 425 correctly
predicted the ambulation mode of the user and adding the
additional features to feature database 185 retains AMP
425’s predictive capabilities. If the estimated ambulation
mode differs from the predicted ambulation mode, then the
AMP 425 likely did not predict the correct estimation mode;
however, adding the features from WD with the estimated
ambulation mode label to feature database 185 improves,
over time, AMP 425’s predictive capabilities.

It should be understood that while use of the adaptive
intent recognition is described above with respect to a full
gait cycle, it could also be used more than once within a gait
cycle. For instance, the adaptive intent recognition may take
place at each toe-off as well as each heel-strike during use
of assistive device 10.

It should be understood that in addition to controlling
lower limb prostheses and orthoses, controller board 150
and its associated components may be used in analysis of
able bodied movement with attachment of appropriate
mechanical and EMG sensors. Such analysis could be use-
ful, for instance, to monitor the falls of seniors or others in
the home, or patients with conditions like Parkinson’s dis-
ease. The systems and methods described herein could be
used to determine why a patient fell, how the patient fell, to
measure the outcomes of a patient’s physical therapy, or to
compare the effectiveness of different prostheses. Addition-
ally, it should be understood that the systems and methods
described herein could be implemented in other assistive
devices such as trans-tibial, knee disarticulation, or other
lower limb assistive devices.

Although the ambulation controller described above uti-
lizes a specific set of features 415 and a specific set of state
points (at 0%, 25%, 50%, and 75% of each of swing phase
and stance phase), it should be understood that other values
could be used. In one embodiment, ambulation controller
400 may identify state points on the basis of phase-based
events. Such phase-based events may be determined by data
from mechanical sensors 50. As an example, the zero
crossing of data from knee velocity sensor 53, which rep-
resents a transition between flexion and extension of knee
20, may be a phase-based event used to identify a state point
and its corresponding instantaneous window of data. Alter-
nately, a state point may be identified using other phase
variables, such as shank angle. Also, a different number of
state points could be used, although a substantial decrease in
the number of state points (such as a reduction to two state
points, one in stance and one in swing) may increase
transitional error. Finally it should be understood that alter-
native features could be stored in IFD 185 and SFD 186 and
used to train AMP 425.

Phase state controller. Ambulation controller 400 imple-
ments impedance-based control of assistive device 10
through the use of finite state machines in phase state
controller 450. In one embodiment, ambulation controller
400 divides each gait cycle of each ambulation mode into
four phases: early-stance, late-stance, early swing, and late
swing. A finite-state machine is used to transition between
the four phases of each ambulation mode. The state-machine
triggers are simple thresholds with logical AND/OR opera-
tors that interpret values from mechanical sensors 50. In one
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embodiment, early stance is triggered when the value of load
cell 51 rises above a preset level 20% of a user’s body
weight; late stance is triggered when the ankle 30 angle
crosses an eight degree angle; early swing is triggered when
the load cell 51 value drops below a preset value of 30% of
the user’s body weight; and late swing is triggered when the
velocity of the knee 20 crosses zero. These preset values
may be adjusted by the clinician depending on each indi-
vidual user’s gait. For instance, the preset values may be
adjusted upwards if the user tends to step hard while
operating assistive device 10.

FIG. 9 displays a representation of a finite state machine
model for the ambulation modes level walking, stair ascent,
and stair descent. Within each ambulation mode are the four
phase states early stance, late stance, early swing, and late
swing. The solid lines reflect transitions within the gait
cycle, determined by mechanical sensors 50. For instance,
when user operates assistive device 10 while walking, the
phase state controller 450 causes assistive device 10 to start
in the early stance phase state, and over the course of the
stride transition to late stance, early swing, and then late
swing. At the beginning of the next stride, assuming its
ambulation mode remains walking, the phase state controller
transitions the phase state of assistive device 10 back to early
stance.

Within each phase state, phase state controller 450 assigns
a set of values for impedance parameters 460 for each of the
knee 20 and ankle 30. In one embodiment, impedance
parameters 460 include stiffness, damping, and spring equi-
librium angle. The impedance based architecture of phase
state controller 450 may be implemented based on known
strategies. Impedance parameters 460 adjust the stiffness of
assistive device 10, where a higher stiffness holds the user
up when assistive device 10 is in early stance or late stance
and a low stifftness allows assistive device 10 to swing
relatively freely when the user is in early swing or late
swing. Values for impedance parameters 460 are initially set
for a specific user by a clinician, using computer unit 250 or
another appropriate method. After setting initial values for
the impedance parameters 460 for each phase state of each
ambulatory mode, the clinician may adjust the values after
watching the user operate the assistive device 10 and on the
basis of the user’s perception of the stiffness during any
phase state of any ambulation mode. For each joint of
assistive device 10, impedance parameters 460 are included
in phase state controller 450 for each gait phase of each
ambulation mode. For instance, one set of values of imped-
ance parameters 460 may include values for stiffness, damp-
ing, and spring equilibrium angle, for knee 20, for the “late
stance” phase state of the “level walking” ambulation mode.
Table 6 lists possible starting values for impedance param-
eters 460, where a positive theta knee value indicates knee
flexion, a positive theta ankle value indicates plantar flexion,
and the numbers after each mode reflect the gait phase (with
“1” corresponding to early stance, “2” corresponding to late
stance, “3” corresponding to early swing, and “4” corre-
sponding to late swing).

TABLE 6
K Knee B Knee Theta B Ankle Theta
(NM/ (NM/ Knee K Ankle (NM/  Ankle
deg) deg) (deg) (NM/deg) deg)  (deg)
Walk 1 3 25 0 7 25 0
Walk 2 2 .05 10 7 25 -12
Walk 3 4 .05 60 2.5 25 5
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TABLE 6-continued

K Knee B Knee Theta B Ankle Theta

(NM/ (NM/ Knee K Ankle (NM/  Ankle

deg) deg) (deg) (NM/deg) deg) (deg)

Walk 4 5 .08 0 2 15 0
Ramp Up 1 3 .25 0 7 25 0
Ramp Up 2 2 .05 10 9 2 -12
Ramp Up 3 4 0.05 50 2.5 25 0
Ramp Up 4 5 0.08 0 2 15 0
Ramp Down 1 2 .25 0 5 0.25 0
Ramp Down 2 1 .1 30 5 0.1 -5
Ramp Down 3 1 .05 50 25 2 0
Ramp Down 4 0.5 .08 0 2.5 15 0
Stair Up 1 3 15 50 5 1 0
Stair Up 2 3 15 0 5 1 -15
Stair Up 3 1 0.01 100 1.5 2 20
Stair Up 4 5 0.1 50 1.5 2 15
Stair Down 1 1.5 .25 0 1.5 2 -15
Stair Down 2 1.5 .25 30 1.5 2 0
Stair Down 3 1 .05 50 1.5 2 0
Stair Down 4 045 0.1 0 1.5 2 -15

It should be understood that alternate embodiments exist
for phase state controller 450. Each ambulation mode could
be divided into other phases than those described here, using
other values from mechanical sensors 50. Phase state con-
troller could utilize a different impedance based architecture,
or even an architecture not based on impedance control. For
instance, the phase state controller 450 method could be
based on a determination of the center of pressure during
stance phase.

Torque controller. Torque controller 475 uses phase state
information from phase state controller 450 to control the
motors that power assistive device 10. The torque controller
475 receives a phase state and values for impedance param-
eters 460 from phase state controller 450. Torque controller
475 then compares the phase state with the prior phase state
of assistive device 10, and updates the phase state i to the
new phase state if a transition has occurred. Torque control-
ler next loads the values of impedance parameters 460 for
the phase state i and computes the torque for the knee 20 and
ankle 30 using the equations provided, where 0, is the
position value of knee 20 derived from position sensor 52,
0, is the position value of ankle 30 derived from position
sensor 54, 0, is the knee velocity derived from velocity
sensor 53, 0, is the ankle velocity derived from velocity
sensor 55, and k, e, and f§ represent impedance parameters
460 for the knee and ankle for state phase i. Finally, the
torque values are sent to motors 41, which generate the
intended torque to operate assistive device 10 in the pre-
dicted ambulation mode.

The invention claimed is:
1. A control unit comprising:

a. a memory having stored thereon a feature database that
includes feature data, a portion of which is labeled with
a transition from an ambulation mode; and

b. a memory having stored thereon a pattern recognition
controller that is trained using the labeled feature data;

wherein the pattern recognition controller is configured to
predict the ambulation mode of an assistive device and
the control unit is configured to naturally transition the
assistive device from operating in a prior stride to
operating in the predicted ambulation mode in a next
stride, wherein the prior stride is the stride immediately
prior to the next stride.
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2. The control unit of claim 1:

a. wherein the feature database is further configured to be
updated with features derived from data collected from
said sensors during level walking of the assistive
device; and

b. wherein the pattern recognition controller is further
configured to be retrained on an updated feature data-
base.

3. The control unit of claim 1:

a. wherein the pattern recognition controller comprises a
classifier for each controlled ambulation mode.

4. The control unit of claim 1:

a. wherein the pattern recognition controller is configured
to predict the next ambulation mode of the assistive
device using features derived from the prior stride.

5. The control unit of claim 4:

a. wherein the pattern recognition controller is further
configured to predict the ambulation mode of the
assistive device using at least one of an LDA, a
dynamic Bayesian network, a hidden Markov model, or
a Kalman filter.

6. The control unit of claim 1:

a. wherein the feature database is configured to be updated
with feature data derived from data collected from said
sensors during the prior stride and labeled with a
transition from an ambulation mode.

7. The control unit of claim 1:

a. wherein the control unit is configured to predict the
ambulation mode of the assistive device using data
collected from at least one electrode sensor coupled to
the assistive device.

8. The control unit of claim 1, wherein the ambulation
mode of the prior stride is a level walking mode and the
ambulation mode of the next stride is a stair descent mode.

9. The control unit of claim 1, wherein the ambulation
mode of the prior stride is a level walking mode and the
ambulation mode of the next stride is a stair ascent mode.

10. The control unit of claim 1, wherein the ambulation
mode of the prior stride is a level walking mode and the
ambulation mode of the next stride is a ramp descent mode.

11. The control unit of claim 1, wherein the ambulation
mode of the prior stride is a level walking mode and the
ambulation mode of the next stride is a ramp ascent mode.

12. The control unit of claim 1, wherein the ambulation
mode of the prior stride is a stair ascent mode and the
ambulation mode of the next stride is a level walking mode.

13. The control unit of claim 1, wherein the ambulation
mode of the prior stride is a stair descent mode and the
ambulation mode of the next stride is a level walking mode.

14. The control unit of claim 1, wherein the ambulation
mode of the prior stride is a ramp ascent mode and the
ambulation mode of the next stride is a level walking mode.

15. The control unit of claim 1, wherein the ambulation
mode of the prior stride is a ramp descent mode and the
ambulation mode of the next stride is a level walking mode.

16. The control unit of claim 1, wherein the ambulation
mode of the prior stride is the same as the ambulation mode
of the next stride.

17. The control unit of claim 1, wherein the pattern
recognition controller is configured to predict the ambula-
tion mode of the next stride with an error rate equal to or less
than three percent.

18. The control unit of claim 1, wherein the pattern
recognition controller is configured to predict the ambula-
tion mode of the next stride with an error rate equal to or less
than two and a half percent.
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19. The control unit of claim 1, wherein the pattern
recognition controller is configured to predict the ambula-
tion mode of the next stride with an error rate equal to or less
than two and a two tenths of a percent.

20. The control unit of claim 1, wherein the feature data
comprises the number of zero crossings in a signal collected
from an electromyographic sensor.

21. The control unit of claim 1, wherein the feature data
comprises the number of slope sign changes in a signal
collected from an electromyographic sensor.

22. The control unit of claim 1, wherein the feature data
comprises the waveform length of a signal collected from an
electromyographic sensor.

23. The control unit of claim 1, wherein the assistive
device is an artificial knee assistive device.

24. The control unit of claim 1, wherein the assistive
device is an artificial knee prosthesis.

25. An assistive device comprising:

a. at least one powered joint;

b. a set of sensors coupled to the at least one powered

joint;

c. a control unit, comprising a memory having thereon a
pattern recognition controller, a feature database, and
feature data contained in the feature database;

d. wherein the pattern recognition controller is configured
to be trained on a portion of feature data that is labeled
with a transition from an ambulation mode;

wherein the ambulation mode of the assistive device is
configured to be predicted by the pattern recognition
controller and wherein the assistive device is config-
ured to provide a natural transition from operating in a
prior stride to operating in the predicted ambulation
mode in the next stride.

26. The assistive device of claim 25:

a. wherein the feature database is configured to be updated
with features derived from data collected from said
sensors during level walking of the assistive device;
and

b. wherein the pattern recognition controller is configured
to be retrained on an updated feature database.

27. The assistive device of claim 25:

a. wherein the pattern recognition controller comprises a
classifier for each controlled ambulation mode.

28. The assistive device of claim 25:

a. wherein the pattern recognition controller is configured
to predict the next ambulation mode of the assistive
device using features derived from the prior stride.

29. The assistive device of claim 25:

a. wherein the feature database is configured to be updated
with feature data derived from data collected from said
sensors during the prior stride and labeled with a
transition from an ambulation mode.

30. The assistive device of claim 25:

b. wherein the pattern recognition controller comprises a
classifier for each controlled ambulation mode;

c. wherein the pattern recognition controller is configured
to predict the next ambulation mode of the assistive
device using features derived from the prior stride;

d. wherein the feature database is configured to be
updated with feature data derived from data collected
from said sensors during the prior stride and labeled
with a transition from an ambulation mode;

e. wherein the feature database is configured to be updated
with features derived from data collected from said
sensors during level walking of the assistive device;

f wherein the pattern recognition controller is configured
to be retrained on an updated feature database; and
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g. wherein the assistive device is configured to operate in
the ambulation mode predicted by the pattern recogni-
tion controller.

31. The assistive device of claim 25, wherein the ambu-
lation mode of the prior stride is a level walking mode and
the ambulation mode of the next stride is a stair descent
mode.

32. The assistive device of claim 25, wherein the ambu-
lation mode of the prior stride is a level walking mode and
the ambulation mode of the next stride is a stair ascent mode.

33. The assistive device of claim 25, wherein the ambu-
lation mode of the prior stride is a level walking mode and
the ambulation mode of the next stride is a ramp descent
mode.

34. The assistive device of claim 25, wherein the ambu-
lation mode of the prior stride is a level walking mode and
the ambulation mode of the next stride is a ramp ascent
mode.

35. The assistive device of claim 25, wherein the ambu-
lation mode of the prior stride is a stair ascent mode and the
ambulation mode of the next stride is a level walking mode.

36. The assistive device of claim 25, wherein the ambu-
lation mode of the prior stride is a stair descent mode and the
ambulation mode of the next stride is a level walking mode.

37. The assistive device of claim 25, wherein the ambu-
lation mode of the prior stride is a ramp ascent mode and the
ambulation mode of the next stride is a level walking mode.

38. The assistive device of claim 25, wherein the ambu-
lation mode of the prior stride is a ramp descent mode and
the ambulation mode of the next stride is a level walking
mode.

39. The assistive device of claim 25, wherein the ambu-
lation mode of the prior stride is the same as the ambulation
mode of the next stride.

40. The assistive device of claim 25, wherein the pattern
recognition controller is configured to predict the ambula-
tion mode of the next stride with an error rate equal to or less
than three percent.

41. The assistive device of claim 25, wherein the pattern
recognition controller is configured to predict the ambula-
tion mode of the next stride with an error rate equal to or less
than two and a half percent.

42. The assistive device of claim 25, wherein the pattern
recognition controller is configured to predict the ambula-
tion mode of the next stride with an error rate equal to or less
than two and a two tenths of a percent.

43. The assistive device of claim 25, wherein the feature
data comprises the number of zero crossings in a signal
collected from an electromyographic sensor.

44. The assistive device of claim 25, wherein the feature
data comprises the number of slope sign changes in a signal
collected from an electromyographic sensor.

45. The assistive device of claim 25, wherein the feature
data comprises the waveform length of a signal collected
from an electromyographic sensor.

46. The assistive device of claim 25, wherein the assistive
device is an artificial knee assistive device.

47. The assistive device of claim 25, wherein the assistive
device is an artificial knee prosthesis.

48. A method comprising:

a. receiving a first data from at least one mechanical
sensor coupled to the assistive device, the first data
collected during a prior stride of the assistive device;

b. receiving a second data from at least one electromyo-
graphic sensor coupled to the assistive device, the
second data collected during the prior stride;
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c. predicting an ambulation mode of a next stride of the
assistive device with a pattern recognition controller
using feature values from the first data and the second
data, wherein the pattern recognition controller has
been trained on a database that includes feature data, a
portion of which is labeled with a transition from an
ambulation mode

d. naturally transitioning the assistive device from the
prior stride to the next stride; and

e. operating the assistive device in the predicted ambula-
tion mode during the next stride.

49. The method of claim 48, wherein the step of predict-

ing an ambulation mode of the next stride comprises:

a. determining the ambulation mode of the prior stride;

b. selecting a classifier from a set of classifiers, each
classifier in the set of classifiers being associated with
an ambulation mode to which the assistive device may
transition from the ambulation mode of the prior stride;

c. predicting the ambulation mode of the next stride using
the selected classifier.

50. The method of claim 49, wherein the step of predict-
ing the ambulation mode of the next stride using the selected
classifier comprises providing features derived from the first
data and features derived from the second data to the
selected classifier.

51. The method of claim 50, wherein the provided fea-
tures are derived from a portion of the first data and a portion
of the second data collected during one or more predeter-
mined positions of the assistive device in the prior stride.

52. The method of claim 51, wherein the one or more
predetermined positions comprises the position of the assis-
tive device at about 25% of the prior stride.

53. The method of claim 51, wherein the one or more
predetermined positions comprises the position of the assis-
tive device at about 50% of the prior stride.

54. The method of claim 51, wherein the one or more
predetermined positions comprises the position of the assis-
tive device at about 75% of the prior stride.

55. The method of claim 51, wherein the one or more
predetermined positions comprises the positions of the assis-
tive device at about 25%, 50%, and 75% of the prior stride.

56. The method of claim 51, wherein the portion of the
first data and the portion of the second data are collected
during an approximately 300 ms period adjacent to each of
the one or more predetermined positions.

57. The method of claim 48, further comprising providing
a natural transition from the prior stride to the next stride,
wherein the ambulation mode of the prior stride is a level
walking mode and the ambulation mode of the next stride is
a stair descent mode.

58. The method of claim 48, further comprising providing
a natural transition from the prior stride to the next stride,
wherein the ambulation mode of the prior stride is a level
walking mode and the ambulation mode of the next stride is
a stair ascent mode.

59. The method of claim 48, further comprising providing
a natural transition from the prior stride to the next stride,
wherein the ambulation mode of the prior stride is a level
walking mode and the ambulation mode of the next stride is
a ramp descent mode.

60. The method of claim 48, further comprising providing
a natural transition from the prior stride to the next stride,
wherein the ambulation mode of the prior stride is a level
walking mode and the ambulation mode of the next stride is
a ramp ascent mode.

61. The method of claim 48, further comprising providing
a natural transition from the prior stride to the next stride,
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wherein the ambulation mode of the prior stride is a stair
ascent mode and the ambulation mode of the next stride is
a level walking mode.

62. The method of claim 48, further comprising providing
a natural transition from the prior stride to the next stride,
wherein the ambulation mode of the prior stride is a stair
descent mode and the ambulation mode of the next stride is
a level walking mode.

63. The method of claim 48, further comprising providing
a natural transition from the prior stride to the next stride,
wherein the ambulation mode of the prior stride is a ramp
ascent mode and the ambulation mode of the next stride is
a level walking mode.

64. The method of claim 48, further comprising providing
a natural transition from the prior stride to the next stride,
wherein the ambulation mode of the prior stride is a ramp
descent mode and the ambulation mode of the next stride is
a level walking mode.

65. The method of claim 48, further comprising providing
a natural transition from the prior stride to the next stride,
wherein the ambulation mode of the prior stride is the same
as the ambulation mode of the next stride.
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66. The method of claim 48, wherein the error rate of the
predicting the ambulation mode of the next stride is equal to
or less than three percent.

67. The method of claim 48, wherein the error rate of the
predicting the ambulation mode of the next stride is equal to
or less than two and a half percent.

68. The method of claim 48, wherein the error rate of the
predicting the ambulation mode of the next stride is equal to
or less than two and two tenths of a percent.

69. The method of claim 48, wherein the feature values
comprise the number of zero crossings in a signal collected
from an electromyographic sensor.

70. The method of claim 48, wherein the feature values
comprise the number of slope sign changes in a signal
collected from an electromyographic sensor.

71. The method of claim 48, wherein the feature values
comprise the waveform length of a signal collected from an
electromyographic sensor.

72. The method of claim 48, wherein the assistive device
is an artificial knee assistive device.

73. The method of claim 48, wherein the assistive device
is an artificial knee prosthesis.
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